In der Aufgabe wird die $l^0$-Norm der Funktionenfolge $g(x) = \frac{\sin(nx)}{\sqrt{n}}$ für $x \in [0,1]$ berechnet. Die $l^0$-Norm einer Funktionenfolge $f_n$ ist definiert als die Anzahl der nicht-nullen Elemente der Folge. In diesem Fall ist die $l^0$-Norm von $g(x)$ also gleich der Anzahl der $x \in [0,1]$, für die $g(x) \neq 0$.
Wenn $n = 1$, dann ist $g(x) = \frac{\sin(x)}{\sqrt{1}} = \sin(x)$, und die $l^0$-Norm von $g(x)$ ist 2, da $g(0) = 0$ und $g(1) = 0$.
Wenn $n > 1$, dann ist $g(x) = \frac{\sin(nx)}{\sqrt{n}}$. Wie bereits erwähnt, ist die $l^0$-Norm von $g(x)$ gleich der Anzahl der $x \in [0,1]$, für die $g(x) \neq 0$. Da $\sin(nx)$ periodisch ist und eine Periode von $2\pi$ hat, gibt es für jeden Wert von $n$ genau eine Stelle in $[0,1]$, an der $\sin(nx) \neq 0$. Daher ist die $l^0$-Norm von $g(x)$ für $n > 1$ immer 1.
In diesem Fall wäre die Lösung also tatsächlich $\frac{1}{\sqrt{n}}$, da dies die Anzahl der nicht-nullen Elemente der Funktionenfolge $g(x)$ für $n > 1$ darstellt.