0 Daumen
380 Aufrufe

$$\text{ Sei } n \in \mathbb N \text{ beliebig und } A \in M_{nxn}(\mathbb R) \text{ symmetrisch. }$$

$$\text { Zeigen Sie, dass A diagonalisierbar über } \mathbb R \text{ ist.}$$

Ich habe schon einiges rumprobiert, aber der Beweis will einfach nicht klappen. Was genau muss ich den beweisen?

Avatar von
"Alle reellen Matrizen sind diagonalisierbar

Diese Überschrift scheint keineswegs mit dem übereinzustimmen, was nachher noch erwähnt wird.

Präzision und Vollständigkeit sind in Mathematik grundamental.

Das stimmt tatsächlich, in der Überschrift habe ich "symmetrisch" vergessen...

1 Antwort

0 Daumen

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community