0 Daumen
628 Aufrufe

Vereinfachen Sie diesen Term:

Ich bitte um einen Lösungsweg.

1c).PNG

$$\textrm{c)} \quad \dfrac{3 a^{2}-27}{a-3} $$

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort

$$\frac{3a^2-27}{a - 3} = \frac{3(a^2-9)}{a - 3} = \frac{3(a-3)(a+3)}{a - 3} = \frac{3(a+3)}{1} = 3(a + 3) = 3a+9$$

Avatar von 488 k 🚀
0 Daumen

Klammere im Zähler den Faktor 3 aus. Zerlege den Restterm unter Verwendung der 3. binomischen Formel in ein Produkt aus zwei Klammern. Eine dieser Klammern kürzt sich mit dem Nenner weg.

Avatar von 55 k 🚀

Beachte, dass die Terme nur für a≠3 äquivalent sind.

Beachte, dass die Terme nur für a≠3 äquivalent sind.

Das Problem stellt sich nicht, da der Bruch für a= 3 nicht definiert ist.

PS:

Welche Terme sollen nicht äquivalent sein?

Ich sehe nur einen Bruchterm.

Ich sehe nur einen Bruchterm.

Dann kontaktiere mal den Optiker deines Vertrauens. In der Kettengleichung

$$\frac{3a^2-27}{a - 3} = \frac{3(a^2-9)}{a - 3} = \frac{3(a-3)(a+3)}{a - 3} = \frac{3(a+3)}{1} = 3(a + 3) = 3a+9$$
sind vier Bruchterme zu entdecken, von denen der letzte nicht zu den ersten drei äquivalent ist.

Ich sehe nur einen Bruchterm.

In der Angabe steht genau einer.

Wer sollte also besser zum Optiker gehen?

Wahrscheinlich hast du im Gewirr von Aufgabe, Antworten und Kommentaren etwas die Übersicht verloren, welche Äußerung sich worauf bezieht. Das bringt das Alter halt mit sich.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
5 Antworten
0 Daumen
1 Antwort
0 Daumen
3 Antworten

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community