Aloha :)
Du suchst die Hoch- und Tiefpunkte der Funktion:$$f(x)=x^2+4x-7$$
An einem Hoch- oder Tiefpunkt verläuft die Tangente an den Funktionsgraphen parallel zur x-Achse, hat also die Steigung Null. Über die Steigung einer Funktion gibt ihre erste Ableitung Auskunft.
Du setzt also die erste Ableitung gleich Null, um Kandidaten für Hoch- und Tiefpunkte zu finden:$$f'(x)=2x+4\stackrel!=0\implies x=-2$$Warum ist \((x=-2)\) nur ein Kandidat? Es gibt Funktionen, deren Tangente an einem Punkt parallel zur x-Achse verläuft, die dort aber keinen Hoch- oder Tiefpunkt haben. Ein Beispiel für eine solche Funktion ist z.B: \(g(x)=x^3\). Daher musst du den Kandidaten noch prüfen.
Zur Prüfung kannst du die zweite Ableitung verwenden. Das Vorzeichen der zweiten Ableitung gibt nämlich Auskunft darüber, wie die Funktion an einem Punkt gekrümmt ist. Ist die zweite Ableitung positiv, ist die Kurve links-gekrümmt (Minimum). Ist die zweite Ableitung negativ, ist die Kurve rechts-gekrümmt (Maximum).
Die zweite Ableitung kann auch gleich Null sein, dann hilft dir die zweite Ableitung als Prüfung auf Maximum oder Mimimum nicht weiter. In einem solchen Fall kannst du dann prüfen, ob die erste Ableitung an der fraglichen Stelle ihr Vorzeichen wechselt. Ist der Vorzeichenwechsel von plus nach minus, steigt die Funktion vor der kritischen Stelle an und fällt danach wieder ab, also liegt ein Maximum vor. Ist der Vorzeichenwechsel von minus nach plus, fällt die Funktion vor der kritischen Stelle ab und steigt danach wieder an, also liegt ein Minimum vor.
Hier ist die zweite Ableitung für alle \(x\)-Werte gleich, nämlich \(\;f''(x)=2>0\;\). Die Kurve ist also durchgängig links-gekrümmt, sodass an der Stelle \(x=-2\) ein Minimum liegt.