Aufgabe:
a) Beweisen sie , dass M2 endlich erzeugt ist
b) Geben Sie außerdem noch ein unendliches Erzeugendensystem von M2 an
Text erkannt:
Seien \( n \geq 2, \mathbb{K} \) ein Körper und \( \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{K} \). Beweisen oder widerlegen Sie, dass die folgenden Mengen Unterräume des Vektorraums \( \mathbb{K}^{n} \) sind:
(a) \( M_{1}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{K}^{n} \mid \sum \limits_{i=1}^{n} \alpha_{i} x_{i}=1\right\} \),
(b) \( M_{2}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{K}^{n} \mid \sum \limits_{i=1}^{n} \alpha_{i} x_{i}=0\right\} \),
(c) \( M_{3}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{K}^{n} \mid x_{1} \cdot x_{2}=0\right\} \).
(d) Sei nun \( \mathbb{K}=\mathbb{R} \) und \( M_{4}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum \limits_{i=1}^{n-1} x_{i} \geq x_{n}\right\} \).
Problem/Ansatz:
Ich habe leider keine Idee bzw. Keinen Ansatz wie ich beweisen kann, dass eine Menge endlich erzeugt werden kann, kann mir da jemand bei weiterhelfen? Und wie kann ich bei b ein unendliches erzeugendensystem angeben? Ist das wie bei endlichen ?