Aloha :)
$$I=\int\limits_0^1\underbrace{y}_{=u}\cdot\underbrace{\alpha e^{-\alpha y}}_{=v'}\,dy=\left[\underbrace{y}_{=u}\cdot\underbrace{\left(-e^{-\alpha y}\right)}_{=v}\right]_{y=0}^1-\int\limits_0^1\underbrace{1}_{=u'}\cdot\underbrace{\left(-e^{-\alpha y}\right)}_{=v}\,dy$$$$\phantom I=-e^{-\alpha}+\int\limits_0^1e^{-\alpha y}\,dy=-e^{-\alpha}+\left[-\frac1\alpha e^{-\alpha y}\right]_0^1=-e^{-\alpha}+\left(-\frac1\alpha\,e^{-\alpha}+\frac1\alpha\right)$$$$\phantom I=\frac1\alpha-\frac{\alpha+1}{\alpha\,e^\alpha}$$