Kann jemand meine Lösung mal überprüfen? :)
Aufgabe
Begründen Sie, dass die folgenden Kurven
rektifizierbar sind und berechnen Sie ihre Längen bezüglich der Euklidischen Norm. Berechnen Sie auch die natürliche Parametrisierung.
Lösung
Text erkannt:
Aulgabe)
\( r:[0,1] \rightarrow \mathbb{R}^{3}, t \mapsto\left(t, t^{2}, \frac{2 t^{3}}{3}\right) \)
Es gilt: \( \gamma(t)=\left(1,2 t, 2 t^{2}\right) \) und \( \mid \dot{r}(t) \|=\sqrt{1+4 t^{2}+4 t^{4}}=\sqrt{\left(2 t^{2}+1\right)^{2}}=2 t^{2}+1 \)
\( \begin{array}{l} \int \limits_{0}^{1}\|\dot{\gamma}(t)\| d t=\int \limits_{0}^{1} 2 t^{2}+1 d t \\ =\left[\frac{2}{3} t^{3}+t\right]_{0}^{1}=\frac{5}{3} \\ \left.s:[0,1] \rightarrow\left[0, \frac{5}{3}\right], t t\right) \int \limits_{0}^{t}\|\gamma(t)\|=2 t^{2}+1-1=2 t^{2} \end{array} \)
Unlchrabbildung: \( s=2 t^{2} \)
\( \Leftrightarrow t=\sqrt{\hat{\imath}} \)
L) \( \left.\varphi:\left[0, \frac{5}{3}\right] \rightarrow[0,7], t H\right) \sqrt{\hat{2} t} \)
natirliche Paramenisiorng
\( \left.\gamma \circ \varphi\left[0, \frac{5}{3}\right] \rightarrow 12^{n}, t t\right) r(\varphi(t))=\left(\sqrt{\frac{1}{2} t}, \frac{1}{2} t, 2 \cdot \frac{\sqrt{\frac{1}{2}} t^{5}}{3}\right) \)
Text erkannt:
(b) \( \gamma_{2}:[0,1] \rightarrow \mathbb{R}^{3}, t \mapsto\left(t, t^{2}, \frac{2 t^{3}}{3}\right) \)