a) Bestimmen Sie die Gleichung einer Geraden g, die in E liegt. Kann ich hier allgemein einen Ansatz als Geradengleichung aufstellen mit beispielsweise Aufpunkt A und Richtungsvektor BC? Oder wie gehe ich hier vor?
Du kannst einen beliebigen Vektor nehmen, der in der Ebene liegt. Der Vektor \(\overrightarrow{BC}\) ist möglich, es geht aber natürlich auch einfacher: Man lasse einfach die zweite Richtung der Ebene weg und erhält dann sofort eine Gerade (mache dir das mal anschaulich klar). Bei solchen Aufgaben geht es um Verständnis und nicht darum, auf möglichst komplizierte Weise eine Gerade anzugeben.
b) Bestimmen Sie eine Gleichung einer Geraden h, die parallel zu E ist und nicht in E liegt.
Parallel zu E heißt gleicher Richtungsvektor, deshalb könnte ich zum Beispiel den Richtungsvektor AB nehmen. Doch wie muss ich weiter vorgehen, um den Aufpunkt so zu wählen, dass h nicht in E liegt?
Dieselbe Argumentation wie in a): du brauchst nur einen Vektor, der in der Ebene liegt, das kann jede beliebige Linearkombination der Spannvektoren sein. Man spricht in einem solchen Fall auch davon, dass dieser Vektor komplanar (in einer Ebene liegend) zu den Spannvektoren ist. Du musst jetzt nur gewährleisten, dass die Gerade nicht in der Ebene liegt. Dazu kannst du den Aufpunkt derart verändern, dass er nicht in der Ebene liegt. Einen solchen Punkt findet man leicht und auch hier macht man es sich möglichst leicht als zufällig irgendwelche Werte zu nehmen.
c) Bestimmen Sie die Gleichung einer Geraden i, die E im Punkt D(2|3|-1) orthogonal schneidet. Hier weiß ich leider nur, dass eine Ebene und eine Gerade orthogonal schneiden, wenn die Richtungsvektoren multipliziert werden und 0 herauskommt. Ich habe aber keinen Ansatz dazu. Kann mir vielleicht jemand weiterhelfen?
Du kennst bereits den Aufpunkt der Geraden, nämlich den angegebenen Schnittpunkt. Ansonsten hilft dir das Wissen, was du hast schon weiter. Der Richtungsvektor der Geraden muss orthogonal zu beiden Spannvektoren der Ebene sein, das heißt, deren Skalarprodukt ergibt jeweils 0. Wenn wir sagen, dass der Richtungsvektor
\(\vec{v}=\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}\)
ist, so liefert
\(\vec{v}\cdot \overrightarrow{AB}=0\)
\(\vec{v}\cdot \overrightarrow{AC}=0\)
ein LGS, womit du \(\vec{v}\) bestimmen kannst. Schreibe die Skalarprodukte jeweils einmal aus, dann siehst du es besser. Beachte: es gibt - bis auf Länge und Orientierung - unendlich vieler solcher Vektoren, die das LGS erfüllen.