Es gilt
X{ I }_{ n }-A=\begin{pmatrix} X & 0 & ... & 0 & -{ a }_{ 0 } \\ -1 & ... & 0 & ... & -{ a }_{ 1 } \\ 0 & ... & ... & 0 & ... \\ ... & 0 & ... & X & ... \\ 0 & ... & 0 & -1 & X-{ a }_{ n-1 } \end{pmatrix}
Behauptung:
det(X{ I }_{ n }-A)={ X }^{ n }-\sum _{ i=0 }^{ n-1 }{ { a }_{ i }{ X }^{ i } }
Beweis: Per Induktion nach n:
I.A.: n=1: det(XI1-A1)=X-a0=X1-Summe(i=0, 0, aiXi) wahr.
I.S.: n->n+1
Es gilt
det(X{ I }_{ n+1 }-{ A }_{ n+1 }=det\begin{pmatrix} X & 0 & ... & 0 & -{ a }_{ 0 } \\ -1 & ... & 0 & ... & -{ a }_{ 1 } \\ 0 & ... & ... & 0 & ... \\ ... & 0 & ... & X & -{ a }_{ n-1 } \\ 0 & ... & 0 & -1 & X-{ a }_{ n } \end{pmatrix}€{ M }_{ n+1 }(K)\\ Entwicklung\quad nach\quad der\quad 1.\quad Zeile\\ =X*{ (-1) }^{ n+1 }*det\begin{pmatrix} X & 0 & ... & 0 & -{ a }_{ 1 } \\ -1 & ... & 0 & ... & -{ a }_{ 2 } \\ 0 & ... & ... & 0 & ... \\ ... & 0 & ... & X & ... \\ 0 & ... & 0 & -1 & X-{ a }_{ n } \end{pmatrix}+{ ({ -a }_{ 0 } })*{ (-1) }^{ n+1+1 }*det\begin{pmatrix} -1 & X & ... & 0 & 0 \\ 0 & ... & ... & ... & 0 \\ 0 & ... & ... & ... & ... \\ ... & 0 & ... & -1 & X \\ 0 & ... & 0 & 0 & -1 \end{pmatrix}\\ =X*det\begin{pmatrix} X & 0 & ... & 0 & -{ a }_{ 1 } \\ -1 & ... & 0 & ... & -{ a }_{ 2 } \\ 0 & ... & ... & 0 & ... \\ ... & 0 & ... & X & ... \\ 0 & ... & 0 & -1 & X-{ a }_{ n } \end{pmatrix}+{ (-1) }^{ n+3 }*{ a }_{ 0 }*{ (-1) }^{ n }\\ Nach\quad InduktionsVorausetzung:\\ =X({ X }^{ n }-\sum _{ i=0 }^{ n-1 }{ { a }_{ i+1 }{ X }^{ i } } )+{ (-1) }^{ 2n+3 }*{ a }_{ 0 }\\ ={ X }^{ n+1 }-\sum _{ i=0 }^{ n-1 }{ { a }_{ i+1 }{ X }^{ i+1 } } -{ a }_{ 0 }\\ ={ X }^{ n+1 }-\sum _{ i=1 }^{ n }{ { a }_{ i }{ X }^{ i } } -{ a }_{ 0 }\\ ={ X }^{ n+1 }-\sum _{ i=0 }^{ n }{ { a }_{ i }{ X }^{ i } }