Naja deine Idee war ähnlich Emre, du wolltest irgendwas mit den Scheitelpunkten starten aber das geht ja schlecht, wie man am Bild sieht.
Nein, \(a,b\) sind offensichtlich nicht die Scheitelpunkte, das geht ja auch gar nicht, wenn man das Bild anschaut. Denn \(t\) ist ja an beiden Funktionen eine Tangente und am Scheitelpunkt ist ja die Steigung 0. Also hätte \(t\) dann einen Sprung. Man muss \(a,b\) nicht mal ausrechnen habe ich gerade gemerkt, es kürzt sich vorher schon alles weg, also bei der Berechnung von \(m\). Noch ein paar Tipps: Es gilt
$$ I.~m=f'(a),\quad II.~m=f'(b) $$
Gleichsetzen und nach \(a\) oder \(b\) auflösen. Die resultierende Gleichung muss man dann nur noch in eine Gleichung einsetzen, die ebenfalls \(m\) beschreibt in Abhängigkeit von \(a\) und \(b\). Aber die verrate ich net :)
Wenn man \(m\) hat, muss man nur noch \(n\) so wählen, dass \(t\) beide Funktionen gleichzeitig schneidet. Da braucht man dann wieder \(a,b\)