f(x) = (x^2 - 16)·(a·x^2 + b)
f(0) = 2
f(0) = (x^2 - 16)·(a·x^2 + b) = - 16·b = 2 --> b = - 1/8
f(x) = (x^2 - 16)·(a·x^2 - 1/8) = a·x^4 - 16·a·x^2 - x^2/8 + 2
F(x) = 1/5·a·x^5 - 16/3·a·x^3 - 1/24·x^3 + 2·x
F(4) - F(0) = 44.8/2
16/3 - 2048/15·a - 0 = 22.4 --> a = - 1/8
f(x) = - 1/8·x^4 - 16·(- 1/8)·x^2 - x^2/8 + 2 = - x^4/8 + 15·x^2/8 + 2 = - 1/8·(x^4 - 15·x^2 - 16)