0 Daumen
981 Aufrufe

Kann mir bitte jemand helfen, ich komme da nicht weiter

Bild Mathematik

Avatar von

1 Antwort

0 Daumen

zu (i). 3 Vektoren von IR^4 können kein Erz.system sein, weil dim = 4 bruacht man mindestens 4.

Ob die drei lin. unabh. sind, klärt man durch  den Ansatz

a*v1 + b*v2 + c*v3 = 0 Vektor

Das gibt 4 Gleichungen und wenn die als einzige Lösung

a=b=c=0 haben, sind sie lin. unabh.

(ii) Anzahl stimmt, denn dim=4.

Ist Quatsch, siehe Kommentar von Lu.

Ich hatte da was mit C^2 als R-Vektorraum verwechselt.

wenn sie also lin. unabh. sind (prüfen analog zu (i) )

sind sie auch ein Erz.system.

Avatar von 289 k 🚀

a(1,1) + b(0,i) = (1+i, 0)

a = 1+i         (I)

a + ib = 0      (II)

(I) in (II)

1+i + ib = 0

1+i = -ib       | *i

i - 1 = b

Daher, wenn ich richtig gerechnet habe,

(1+i)(1,1) + (i-1)(0,i) = (1+i, 0) .

Dimension von C^2 ist 2.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community