X[3, 0, 0]
Y[0, b, 0]
Z[0, 0, 3]
XY = [-3, b, 0]
XZ = [-3, 0, 3]
Normalenvektor n = [-3, b, 0] x [-3, 0, 3] = [3·b, 9, 3·b] = 3*[b, 3, b]
Koordinatengleichung
E: b*x + 3*y + b*z = 3b
Abstandsform
d = |b*x + 3*y + b*z - 3b|/√(b^2 + 3^2 + b^2)
d = |b*4 + 3*(-1) + b*4 - 3b|/√(b^2 + 3^2 + b^2) = 3
|5·b - 3|/√(2·b^2 + 9) = 3
b = - 12/7 ∨ b = 6