Gesucht ist vermutlich der Grenzwert für n→∞, also das Verhalten der Folge für sehr große n.
Bei solchen Folgen, die ein Bruch aus zwei Polynomen ist, geht man eigentlich immer gleich vor:
Man klammert sowohl im Zähler als auch im Nenner die höchste Potenz von n aus, das ist in diesem Fall n2.
n→∞lim(n2+1n+1)=n→∞lim(n2(1+n21)n2(n1+n21))=n→∞lim(1+n21n1+n21)
Für n→∞ gilt nun aber 1/n→0 und 1/n2→0, also lautet der Grenzwert:
n→∞lim(1+n21n1+n21)=1+00+0=10=0