f(x, y) = - 1/3·x^3 + 2·x·y - y^2 + 3·x
Erste partielle Ableitungen
fx(x, y) = - x^2 + 2·y + 3
fy(x, y) = 2·x - 2·y
Zweite partielle Ableitungen
fxx(x, y) = - 2·x
fyx(x, y) = 2
fxy(x, y) = 2
fyy(x, y) = - 2
Kritische Stellen fx(x, y) = 0 und fy(x, y) = 0
- x^2 + 2·y + 3 = 0
2·x - 2·y = 0 --> y = x
- x^2 + 2·x + 3 = 0 --> x = 3 ∨ x = -1
(3, 3) und (-1, - 1)