wir sollen hier einen Beweis bringen, dass aus (a,b) und (c,d) stets a=c und b=d folgt . In der englischen Wikipedia ist zumindest a=c erklärt
1. Frage: warum ist der logische Schluss dass auch b=d ist ?
2. Frage: Funktioniert es nur, dass a=c ^b=d wenn a=b ist?
3. Frage: warum kann ich (a,b) so schreiben {{a}, {a, b}}, was würde {{a}, {b}} bedeuten?
sorry ich kopier hier mal die Quelle dazu:
If. If a = c and b = d, then {{a}, {a, b}} = {{c}, {c, d}}. Thus (a, b)K = (c, d)K.
Only if. Two cases: a = b, and a ≠ b.
If a = b:
(a, b)K = {{a}, {a, b}} = {{a}, {a, a}} = {{a}}.(c, d)K = {{c}, {c, d}} = {{a}}.Thus {c} = {c, d} = {a}, which implies a = c and a = d. By hypothesis, a = b. Hence b = d.
If a ≠ b, then (a, b)K = (c, d)K implies {{a}, {a, b}} = {{c}, {c, d}}.
Suppose {c, d} = {a}. Then c = d = a, and so {{c}, {c, d}} = {{a}, {a, a}} = {{a}, {a}} = {{a}}. But then {{a}, {a, b}} would also equal {{a}}, so that b = a which contradicts a ≠ b.Suppose {c} = {a, b}. Then a = b = c, which also contradicts a ≠ b.Therefore {c} = {a}, so that c = a and {c, d} = {a, b}.If d = a were true, then {c, d} = {a, a} = {a} ≠ {a, b}, a contradiction. Thus d = b is the case, so that a = c and b = d.