+2 Daumen
639 Aufrufe

Die Kostenfunktion eines Mengenanpassers lautet

C(x) = 0.09691 x3 -6.8678 x2 +287x+6000.


Der Produzent bestimmt jene Menge, bei der die durchschnittlichen variablen Kosten minimal sind. Bei welcher Produktionsmenge liegt das Betriebsminimum des Herstellers?



KANN BITTE JEMAND MEIN RECHENWEG UND DIE LÖSUNG KONTROLLIEREN?
.

RECHENWEG IM ANHANG!!Bild Mathematik

Avatar von

Vom Duplikat:

Titel: Die Kostenfunktion eines Mengenanpasser

Stichworte: kostenfunktion,minimum

Die Kostenfunktion eines Mengenanpassers lautet

C(x) = 0.09691 x3 -6.8678 x2 +287x+6000.


Der Produzent bestimmt jene Menge, bei der die durchschnittlichen variablen Kosten minimal sind. Bei welcher Produktionsmenge liegt das Betriebsminimum des Herstellers? 


Ist das noch exakt dasselbe wie hier?

https://www.mathelounge.de/482962/kostenfunktion-eines-mengenanpassers-09691-8678-287x-6000 

Die erste Frage war besser, da du selbst etwas versucht hattest. Nur hat offenbar noch niemand Zeit gehabt das genauer anzuschauen.

Der hier https://www.wolframalpha.com/input/?i=(0.09691+x3+-6.8678+x2+%2B287x%2B6000)%2Fx kommt auf etwas anderes.

Bild Mathematik

Soll man die +6000 einfach ignorieren?

Dann ergeben sich beinahe deine Zahlen:

https://www.wolframalpha.com/input/?i=(0.09691+x3+-6.8678+x2+%2B287x)%2Fx

Bild Mathematik

1 Antwort

0 Daumen
 
Beste Antwort

Meine Rechnung:

Bild Mathematik

Avatar von 121 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community