0 Daumen
1,1k Aufrufe

ich habe Probleme bei folgender Aufgabe.


X ist eine Zufallsvariable. Ferner sei die Funktion f mit


f(x) = {c*(x-4)^2, 0 ≤ x ≤8  }

         {0              , sonst    }

gegeben. Für welche reelle Zahl c ist f eine Dichte?


Ich hoffe Ihr könnt mir bei der Aufgabe helfen. Vielen Dank im Voraus.

Avatar von

3 Antworten

+2 Daumen
 
Beste Antwort

f ist eine Dichte wenn f(x) ≥ 0 für alle x ∈ ℝ und ∫-∞..∞ f(x) dx = 1 ist.

Avatar von 107 k 🚀
+1 Daumen

f(x) ist eine Dichte, wenn

∫_(0)^8 c*(x-4)^{2} dx = 1 

Also

c * ∫_(0)^8 (x-4)^{2} dx = 1

Somit

c = 1 /  ∫_(0)^8 (x-4)^{2} dx

Avatar von 162 k 🚀

Vielen Dank für die schnelle Antwort. Woher weiß ich, dass dieser Ausdruck gleich c sein kuss? Du hast ja ein Integral aufgestellt. Muss man das immer so machen? Muss ich den Ausdruck anschließend aufleiten?

f(x) ist eine Dichte, wenn

∫_(0)^{8} c*(x-4)^{2} dx = 1 

Diese Gleichung wurde oben nach c aufgelöst.

c ist gesucht.

Muss ich den Ausdruck anschließend integrieren?

Ja.

0 Daumen

∫(c·(x - 4)^2, x, 0, 8) = 128/3·c = 1 --> c = 3/128 = 0.0234375

Avatar von 488 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community