Die Aufgabe ist es diese Gleichung zu zeigen;
$$\# \left( \bigcup _ { j = 1 } ^ { n } A _ { j } \right) = \sum _ { J \subset \{ 1 , \ldots , n \} } ( - 1 ) ^ { 1 + \# J } \; \# \left( \bigcap _ { j \in J } A _ { j } \right)$$
Ich habe die Induktion gemacht, aber bei dem letzten Induktionsschritt komme ich nicht weiter
(P ist die Potenzmenge)
Hier ein Bsp:
Der Induktionsschritt (n →n+1):
$$\# \left( \bigcup _ { j = 1 } ^ { n +1 } A _ { j } \right) = \sum _ { J \subset \{ 1 , \ldots , n+1 \} } ( - 1 ) ^ { 1 + \# J } \; \# \left( \bigcap _ { j \in J } A _ { j } \right)$$
$$\# \left( \bigcup _ { j = 1 } ^ { n+1 } A _ { j } \right) = \sum _ { J \subset \{ 1 , \ldots , n \} } ( - 1 ) ^ { 1 + \# J } \; \# \left( \bigcap _ { j \in J } A _ { j } \right) + \sum _ { J\prime \in P \{ 1 , \ldots , n+1 \} \backslash P \{ 1 , \ldots , n \} } ( - 1 ) ^ { 1 + \# J\prime } \; \# \left( \bigcap _ { j \in J\prime } A _ { j } \right) $$
$$\# \left( \bigcup _ { j = 1 } ^ { n+1 } A _ { j } \right) \overset{\text{I.V.}}{\underset{\text{}}{=}} \# \left( \bigcup _ { j = 1 } ^ { n } A _ { j } \right) + \sum _ { J\prime \in P \{ 1 , \ldots , n+1 \} \backslash P \{ 1 , \ldots , n \} } ( - 1 ) ^ { 1 + \# J\prime } \; \# \left( \bigcap _ { j \in J\prime } A _ { j } \right) $$
$$\# \left( \bigcup _ { j = 1 } ^ { n+1 } A _ { j } \right) = \# \left( \bigcup _ { j = 1 } ^ { n } A _ { j } \right) + \# \left( A _ { n + 1 } \backslash \left( \bigcup _ { j = 1 } ^ { n } A _ { j } \right) \right)$$
Hat einer einen Vorschlag wie ich von der vorletzten Zeile in die letzten Zeile komme? bzw. wie das konkret aufschreibe ?