Hallo Pattis,
es sind drei Funktionen für die drei verschiedenen Mitgliedschaften zu definieren. Wobei keine Mitgliedschaft auch als ein Typ Mitgliedschaft zählt. Das seien die Funktionen \(f\), \(g\) und \(h\) für keine, einfache und fördernde Mitgliedschaft. Jede Funktion liefert das Geld, welches man im Jahr für's Kino ausgibt in Abhängigkeit der Anzahl \(x\) der Kinobesuche im Jahr. Also $$f(x) = 6,5 € \cdot x$$das sollte klar sein - oder? Die anderen beiden Funktionen sind $$g(x) = 5€ + 28,7€ \cdot \left \lceil\frac{x}{5} \right \rceil \\ h(x) = 36€ + 4€ \cdot x$$ Ich nehme mal an, dass Dir die Gauß-Klammer \(\lceil \rceil\) nicht vertraut ist. Denk sie Dir zunächst mal weg, das machen wir später. Genauso muss man noch schreiben, dass \(x \in \mathbb{N}_0\) ist. D.h. \(x\) ist eine ganze und positive Zahl oder 0, da man nicht ein halbes Mal in's Kino gehen kann.
Aber tun wir mal so, als ob das lineare und stetige Funktionen sind und plotten wir sie:
~plot~ 6,5x;5+28,7x/5;36+4x;[[-1|30|-5|150]];{5/0,76|6,5*5/0,76};{17,82|107,26} ~plot~
a) die Mitgliedschaft gegenüber der Einzeleintrittskarte rentiert,
Die einfache Mitgliedschaft ist rote Gerade, die die blaue bei ca. \(6,6\) schneidet. Nun kann man dann aber nur Gutscheine kaufen, die für fünf Kinobesuche reichen. Jetzt kommt die Gauß-Klammer in's Spiel. In Wahrheit sieht die rote Kurve nämlich so aus:
~plot~ 6,5x;(x<6)*33,7+(x>=6)*(x<11)*62,4+(x>=11)*(x<16)*91+(x>=16)*(x<21)*119,8+(x>=21)*(x<26)*148,5+(x>=26)*200;[[-1|30|-5|150]] ~plot~
Wenn Du 10mal in's Kino gehst, so ist man etwas günstiger. Aber nicht bei 9mal und nicht bei 11mal. Wenn Du sicher sein willst, dass es sich wirklich rentiert, zähle ich \(4/5\) des ersten Gutschein zu den Grundkosten hinzu. Dann erhält man eine neue Funktion \(g^*(x)\) $$g^*(x) = 5 € + \frac 45 \cdot 28,7€ + 28,7€ + \frac{5}{x} = 27,96€ + 5,74€ \cdot x$$ Das mit \(f(x)\) gleich setzen gibt $$\begin{aligned}f(x) &= g^*(x) \\ 6,5€ \cdot x &= 27,96€ + 5,74€ \cdot x \\ 0,76€ \cdot x &= 27,96 € \\ x &\approx 36,8\end{aligned}$$ D.h nach mindestens 37 Kinobesuchen lohnt sich die einfache Mitgliedschaft sicher.
Wann sich die fördernde Mitgliedschaft lohnt, darfst Du jetzt selber rechnen.
Falls Du noch Fragen hast, so melde Dich bitte.
Gruß Werner