a) passt so.
b) \(\displaystyle(i)\ x_n=\sqrt{n+a}-\sqrt n\)
\(\displaystyle=\frac{(\sqrt{n+a}-\sqrt n)(\sqrt{n+a}+\sqrt n)}{\sqrt{n+a}+\sqrt n}\)
\(\displaystyle=\frac a{\sqrt{n+a}+\sqrt n}\)
\(\displaystyle\overset{n\rightarrow\infty}{\longrightarrow}0\)
\(\displaystyle(ii)\ y_n=\sqrt{n+a\sqrt n}-\sqrt n\)
\(\displaystyle=\frac{(\sqrt{n+a\sqrt n}-\sqrt n)(\sqrt{n+a\sqrt n}+\sqrt n)}{\sqrt{n+a\sqrt n}+\sqrt n}\)
\(\displaystyle=\frac {a\sqrt n}{\sqrt{n+a\sqrt n}+\sqrt n}\)
\(\displaystyle=\frac {an}{n+a\sqrt n+2\sqrt{n^2+an\sqrt n}+n}\)
\(\displaystyle=\frac{a}{2+\dfrac1{\sqrt n}+\dfrac{2\sqrt{n^2+an\sqrt n}}n}\)
\(\displaystyle\overset{n\rightarrow\infty}{\longrightarrow}\frac a2\)
\(\displaystyle(iii)\ z_n=\sqrt{n+an}-\sqrt n\)
\(\displaystyle=\frac{(\sqrt{n+an}-\sqrt n)(\sqrt{n+an}+\sqrt n)}{\sqrt{n+an}+\sqrt n}\)
\(\displaystyle=\frac{an}{\sqrt{n+an}+\sqrt n}\)
\(\displaystyle=\frac a{\dfrac1{\sqrt n}\cdot\dfrac{\sqrt{1+a}}n+\dfrac1{\sqrt n}}\)
\(\displaystyle=\frac{\sqrt n\cdot na+\sqrt na}{\sqrt{1+a}}\)
\(\displaystyle\overset{n\rightarrow\infty}{\longrightarrow}\infty\)