0 Daumen
1,2k Aufrufe

Aufgabe:

Bestimmen Sie die Extrempunkte des Graphen von fa in Abhängigkeit von a. Für welchen Wert von a liegt einer der Extrempunkte auf der x-Achse.


f) fa (x)= 1/4 •x^4 - a/4 •x^2


Problem/Ansatz:

Ich möchte wissen ,wie ich  solch eine Aufgabe ausrechnen muss.

Avatar von

2 Antworten

0 Daumen

Hallo

 Extrempunkte findet man mit f'(x)=0 als notwendige Bedingung, hier also f'=x^3+a/2x

also x*(x^2+a/2)=0 also x=0 und x=+-√(-a/2) d.h. da kein Extremwert, wenn a positiv ist.

und da für x=0 f(0)=0 liegt der Wert immer auf der x- Achse  unabhängig von a.

Gruß lul

Avatar von 108 k 🚀
0 Daumen

fa(x) = 1/4·x^4 - a/4·x^2 = 0.25·x^4 - 0.25·a·x^2

fa'(x) = x^3 - 0.5·a·x = x·(x^2 - 0.5·a)

x = 0
x^2 - 0.5·a = 0 --> x = ± √(2·a)/2

fa(0) = 0
fa(√(2·a)/2) = -0.0625·a^2

für a <= 0 ein TP(0 | 0)
für a > 0 ein HP(0 | 0) und TP(√(2·a)/2 | -0.0625·a^2)

Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community