0 Daumen
421 Aufrufe

Warum kann eine sekrechte Gerade die parellel zur senkrechten Koordinatenache ist nicht der Graup einer Funktion sein?

Avatar von

3 Antworten

+1 Daumen
 
Beste Antwort
Eine Funktion ist eine Zuordnung die jedem x, der Definitionsmenge genau ein y der Wertemenge zuordnet.

Eine Senkrechte Gerade hätte zu einem x-Wert allerdings unendlich viele y-Werte.

Avatar von 488 k 🚀
+1 Daumen

Aloha :)

Eine Funktion \(f(x)\) weist einem \(x\)-Wert genau einen Funktionswert zu. Bei einer Geraden parallel zur senkrechten Achse (y-Achse), hätte genau ein \(x\)-Wert unendlich viele Funktionswerte \(f(x)\).

Avatar von 152 k 🚀

Wenn keine Funktion vorliegt, gibt es auch keine Funktionswerte.

+1 Daumen

weil es dort zu einem x-Wert mehrere y-Werte gibt. Bei einer

Funktion muss es aber zu jedem x nur genau ein y geben,

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community