Aufgabe (Beweis mit Körper):
a) Seien \( v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{k} \in \mathbb{K}^{n} . \) Zeigen Sie:
$$ \begin{array}{l} \left\{\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m} \mid \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{K}\right\} \subseteq\left\{\beta_{1} u_{1}+\cdots+\beta_{k} u_{k} \mid \beta_{1}, \ldots, \beta_{k} \in \mathbb{K}\right\} \\ \Longleftrightarrow \forall i \in\{1, \ldots, m\}: v_{i} \in\left\{\beta_{1} u_{1}+\cdots+\beta_{k} u_{k} \mid \beta_{1}, \ldots, \beta_{k} \in \mathbb{K}\right\} \end{array} $$
b) Zeigen Sie:
$$ \left\{\alpha_{1}\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right)+\alpha_{2}\left(\begin{array}{l} 4 \\ 5 \\ 6 \end{array}\right)+\alpha_{3}\left(\begin{array}{l} 7 \\ 8 \\ 9 \end{array}\right) \mid \alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{Q}\right\}=\left\{\beta_{1}\left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right)+\beta_{2}\left(\begin{array}{l} 2 \\ 1 \\ 0 \end{array}\right) \mid \beta_{1}, \beta_{2} \in \mathbb{Q}\right\} $$