Aloha :)
Zeichen kann ich leider nicht so gut, ich kenne mich mit den Tools nicht aus. Daher kann ich dir keine Kontrolllösung für Teil (a) anbieten. Für Teil (b) funktioniert die Rechnung so:
$$L=\int\limits_\gamma \|d\vec r\|=\int\limits_0^{2\pi}\left\|\frac{d\vec r}{dt}\right\|\,dt=\int\limits_0^{2\pi}\left\|\binom{-3\cos^2t\sin t}{3\sin^2t\cos t}\right\|\,dt$$$$\phantom{L}=\int\limits_0^{2\pi}\sqrt{(-3\cos^2t\sin t)^2+(3\sin^2t\cos t)^2}\,dt$$$$\phantom{L}=\int\limits_0^{2\pi}\sqrt{9\sin^2t\cos^2t\cdot\cos^2t+9\sin^2\cos^2t\cdot\sin^2t}\,dt=\int\limits_0^{2\pi}3|\sin t\,\cos t|\,dt$$Zum Auflösen der Betragszeichen, teilen wir das Integral in 4 Intervalle auf:$$\phantom{L}=\int\limits_0^{\pi/2}3\sin t\,\cos t\,dt-\int\limits_{\pi/2}^{\pi}3\sin t\,\cos t\,dt+\int\limits_{\pi}^{3\pi/2}3\sin t\,\cos t\,dt-\int\limits_{3\pi/2}^{2\pi}3\sin t\,\cos t\,dt$$$$\phantom{L}=\left[-\frac{3}{2}\cos^2t\right]_0^{\pi/2}-\left[-\frac{3}{2}\cos^2t\right]_{\pi/2}^{\pi}+\left[-\frac{3}{2}\cos^2t\right]_{\pi}^{3\pi/2}-\left[-\frac{3}{2}\cos^2t\right]_{3\pi/2}^{2\pi}$$$$\phantom{L}=-\frac{3}{2}\left[\left[\cos^2t\right]_0^{\pi/2}-\left[\cos^2t\right]_{\pi/2}^{\pi}+\left[\cos^2t\right]_{\pi}^{3\pi/2}-\left[\cos^2t\right]_{3\pi/2}^{2\pi}\right]$$$$\phantom{L}=-\frac{3}{2}\left[(0-1)-(1-0)+(0-1)-(1-0)\right]=-\frac{3}{2}\cdot(-4)=6$$
Kriegst du die (ii) nach demselben Schema alleine hin? Falls nicht, frag bitte einfach nochmal nach.