$$\lim_{k \rightarrow \infty} k(1-\sqrt{1-\frac{1}{k}}) = \lim_{k \rightarrow \infty} k - k\sqrt{1-\frac{1}{k}} = \lim_{k \rightarrow \infty} \frac{k^2 - k^2(1-\frac{1}{k})}{k + k\sqrt{1-\frac{1}{k}}} = \lim_{k \rightarrow \infty} \frac{1}{1+\sqrt{1-\frac{1}{k}}} = \frac{1}{1+\sqrt{1-0}} = \frac{1}{2} $$