Hallo,
die Normale \(n(x)\) steht senkrecht zur Tangente \(t(x)\), d. h. es gilt \(t'(1)\cdot n'(1)=-1\). Sie ist allgemein gegeben durch:$$n(x)=-\frac{1}{f'(1)}(x-1)+f(1)$$ Damit die Normale durch den Ursprung geht, muss es ein \(x\in \mathbb{R}\) geben, so dass: \(n(x)=-\frac{1}{f'(1)}(x-1)+f(1)=0\). Das ist genau dann der Fall, wenn \(x=f(1)f'(1)+1=0\).