f(x)=x^4 Intervall x=-2 und x=8
Nullstelle: x^4=0 x=0
\( A_{1}=\int \limits_{-2}^{0} x^{4} \cdot d x=\left[\frac{1}{5} \cdot x^{5}\right]_{-2}^{0}=0-\left[\frac{1}{5} \cdot(-2)^{5}\right]=\frac{32}{5} \)
\( A_{2}=\int \limits_{0}^{8} x^{4} \cdot d x=\left[\frac{1}{5} \cdot x^{5}\right]_{0}^{8}=\left[\frac{1}{5} \cdot 8^{5}\right]-0=\frac{32768}{5} \)
\( A=A_{1}+A_{2}=6560 \)