b)
Idee von lul mit dem Kreuzprodukt:
\( \overrightarrow{AM} =\begin{pmatrix}0\\5\\2,5\end{pmatrix},\quad \overrightarrow{AN} =\begin{pmatrix} -5\\0\\2,5\end{pmatrix}\\\\ \left|\overrightarrow{AM} \times \overrightarrow{AN}\right| = \left|\begin{pmatrix}5\cdot2,5-2,5\cdot0\\2,5\cdot(-5)-0\cdot2,5\\0\cdot0-5\cdot(-5)\end{pmatrix}\right| \\= \left| \begin{pmatrix} 12,5\\-12,5\\25\end{pmatrix}\right|=\sqrt{12,5^2+(-12,5)^2+25^2}=25\Large\sqrt{\frac{3}{2}}\)
Andere Idee, mit der Formel für den Flächeninhalt von Dreiecken:
Die Seitendiagonale eines Würfels ist \(\sqrt{2}\) mal die Kantenlänge lang, die Raumdiagonale \(\sqrt{3}\) mal die Kantenlänge.
Das Dreieck NMG hat die Grundline NM mit Länge \(5\cdot \sqrt{2} \) und als Höhe die halbe Strecke AG mit Länge \(\displaystyle 5\cdot \frac{\sqrt{3}}{2} \).
Der Flächeninhalt des Dreiecks beträgt \(\displaystyle \frac{5\cdot\sqrt{2}\enspace\cdot\enspace 5\cdot \Large\frac{\sqrt{3}}{2}\normalsize}{2} \) was für die gesuchte Fläche (zweimal dieses Dreieck) denselben Inhalt gibt wie die Formel oben mit dem Kreuzprodukt.