Text erkannt:
Bonusaufgabe A.9.5* (Stetigkeit von Potenzreihen)
Wir betrachten erneut die Fibonacci-Zahlen
\( a_{0}=a_{1}=1, \quad \forall n \in \mathbb{N}: a_{n+1}=a_{n}+a_{n-1} \)
Sei weiterhin \( f(x)=\sum \limits_{n=0}^{\infty} a_{n} x^{n} \) mit Konvergenzradius \( r>0 \).
(a) Zeigen Sie, dass \( f \) für \( |x|<\frac{1}{2} \) stetig ist.
(b) Beweisen Sie:
\( \forall|x|<r: \quad f(x)=\frac{1}{1-x-x^{2}} \)
Bonusaufgabe A.9.5* (Stetigkeit von Potenzreihen)
Wir betrachten erneut die Fibonacci-Zahlen
\( a_{0}=a_{1}=1, \quad \forall n \in \mathbb{N}: a_{n+1}=a_{n}+a_{n-1} \)
Sei weiterhin \( f(x)=\sum \limits_{n=0}^{\infty} a_{n} x^{n} \) mit Konvergenzradius \( r>0 \).
(a) Zeigen Sie, dass \( f \) für \( |x|<\frac{1}{2} \) stetig ist.
(b) Beweisen Sie:
\( \forall|x|<r: \quad f(x)=\frac{1}{1-x-x^{2}} \)
Hey, ich habe versucht diese Aufgabe zu lösen. Jedoch bin ich verwirrt, was ich mit den Fibonacci Zahlen machen muss. Wäre echt lieb, wenn mir jemand weiter helfen könnte.