Aufgabe:
Ein \( 3 \mathrm{~cm} \) mal \( 3 \mathrm{~cm} \) mal \( 3 \mathrm{~cm} \) Würfel aus weißem Holz wird ganz schwarz angestrichen und dann in \( 27 \mathrm{~Würfel} \) zerhackt, jeweils \( 1 \mathrm{~cm} \) mal \( 1 \mathrm{~cm} \) mal \( 1 \mathrm{~cm} \). Diese kleineren Würfel werden dann in eine Tüte gesteckt und gemischt. Drei werden zufällig (ohne Zurücklegen) herausgegriffen. Wie hoch ist die Wahrscheinlichkeit, drei Würfel mit insgesamt genau vier schwarzen Feldern zu erhalten?.
Problem/Ansatz:
Skizze:
Es handelt sich hier um Ziehen ohne Zurücklegen. Das ist für mich Musik in den Ohren, weil ich denke ich kann sofort die Hypergeometrische Verteilung anwenden. Doch ist das bei dieser Aufgabe sinnvoll?
Der 3x3x3 Würfel lässt sich in 27 kleinere Würfel zerhacken, damit gibt es 27 * 6 = 162 Flächen. Wenn man den Zauberwürfel betrachtet, sieht man, dass auf jeder Seite des größeren Würfels 9 schwarze Felder sind. Also gibt es 54 schwarze Felder und 162 - 54 = 108 weiße Felder.
In der Aufgabe wird danach gefragt, bei 3 Würfeln insgesamt genau 4 schwarze Felder zu ziehen. Das heißt, dass dann gleichzeitig 20 weiße Felder dabei sein müssen.
$$\frac{\begin{pmatrix} 54\\ 4\\ \end{pmatrix}\begin{pmatrix} 108\\ 20\\ \end{pmatrix}}{\begin{pmatrix} 162\\ 24\\\end{pmatrix}}\approx0.0324$$
3.2% hört sich gar nicht so unrealistisch an. Hat jemand einen anderen Ansatz dafür?