\(f_a(x)=x^4-(a+4)x^2+4a^2\)
\(x^4-(a+4)x^2+4a^2=0\)
\(x^4-(a+4)x^2+(\frac{a+4}{2})^2=-4a^2+(\frac{a+4}{2})^2\)
\((x^2-\frac{a+4}{2})^2=-4a^2+(\frac{a+4}{2})^2=-\frac{15}{4}a^2+2a+4 |±\sqrt{~~}\)
\(1.)\)
\(x^2-\frac{a+4}{2}=\sqrt{-\frac{15}{4}a^2+2a+4}\)
\(x^2=\frac{a+4}{2}+\sqrt{-\frac{15}{4}a^2+2a+4} |±\sqrt{~~}\)
\(x_1=\sqrt{\frac{a+4}{2}+\sqrt{-\frac{15}{4}a^2+2a+4}}\)
\(x_2=-\sqrt{\frac{a+4}{2}+\sqrt{-\frac{15}{4}a^2+2a+4}}\)
\(2.)\)
\(x^2-\frac{a+4}{2}=-\sqrt{-\frac{15}{4}a^2+2a+4}\)
\(x^2=\frac{a+4}{2}-\sqrt{-\frac{15}{4}a^2+2a+4} |±\sqrt{~~}\)
\(x_3=\sqrt{\frac{a+4}{2}-\sqrt{-\frac{15}{4}a^2+2a+4}}\)
\(x_4=-\sqrt{\frac{a+4}{2}-\sqrt{-\frac{15}{4}a^2+2a+4}}\)