Hallo
schon die erste Zeile ist nicht sinnvoll , die Summe hängt sicher nicht vom Summationsindex k ab. vielleicht meinst du ak=1/k^2? , bk=1/2k^2?
Dann hast du die Behauptung nur für ein spezielles Beispiel gelöst,
das ist schon mal was, aber eben kein allgemeiner Beweis. Aber da ist noch ein Fehler drin wieder die Summe mit den Summanden gleichgesetzt, die ergäben 1/2k^4 und die Summe darüber konvergiert wirklich allerdings die Summe über 1/k divergiert!
Das einzige, was du weisst ist dass es ein n gibt, so dass \( \sum\limits_{k=n}^{\infty} a_k -a<\epsilon\) entsprechend für die bk
Gruß lul