Betrachten Sie die folgende Menge:
\( \mathcal{B}:=\left\{\left(\begin{array}{l} 1 \\ 3 \\ 5 \end{array}\right),\left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right),\left(\begin{array}{c} 0 \\ 4 \\ -2 \end{array}\right)\right\} . \)
Gegeben sei außerdem die Abbildung
\( \varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad \varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{c} x_{1}+3 x_{2}-x_{3} \\ 5 x_{1}-2 x_{2} \end{array}\right) . \)
(a) Zeigen Sie, dass \( \mathcal{B} \) eine Basis des \( \mathbb{R}^{3} \) ist.