((4·β - 1)·x^2 + x - 2·β)/(x^3 - x) = a/x + b/(x - 1) + c/(x + 1)
Mit (x^3 - x) = x·(x + 1)·(x - 1) multiplizieren
(4·β - 1)·x^2 + x - 2·β = a·(x - 1)·(x + 1) + b·x·(x + 1) + c·x·(x - 1)
Wir setzen mal für x = 0 ; x = -1 und x = 1 ein
(4·β - 1)·0^2 + 0 - 2·β = a·(0 - 1)·(0 + 1) + b·0·(0 + 1) + c·0·(0 - 1) --> a = 2·β
(4·β - 1)·(-1)^2 + (-1) - 2·β = a·((-1) - 1)·((-1) + 1) + b·(-1)·((-1) + 1) + c·(-1)·((-1) - 1) --> c = β - 1
(4·β - 1)·1^2 + 1 - 2·β = a·(1 - 1)·(1 + 1) + b·1·(1 + 1) + c·1·(1 - 1) --> b = β
Damit gilt also:
((4·β - 1)·x^2 + x - 2·β)/(x^3 - x) = 2·β/x + β/(x - 1) + (β - 1)/(x + 1)