0 Daumen
430 Aufrufe

Aufgabe:

Gegeben sei f(x) = ex (x2 - 9x - 8). Bestimmen Sie das Intervall 1, auf dem der Graph
von frechtsgekrümmt ist.


Problem/Ansatz:

Wie kann ich den linke und den rechte intervallgrenze berechnen

Avatar von

f(x) = ex (x2 - 9x - 8)  ???

Ich nehme an:

\(f(x)=e^{x}\cdot(x^2 - 9x - 8) \)

Ist es so ?

Ja genau, f(x)= e^x*(x^2-9x-8)

Bestimmen Sie das Intervall  i, auf dem der Graph
von frechtsgekrümmt ist.


So ist die frage


2 Antworten

0 Daumen

Der Graph einer Funktion ist rechtsgekrümmt, wenn die zweite Ableitung kleiner als 0 ist. Die Intervallgrenzen kannst du also mit den Nullstellen der zweiten Ableitung finden. Mit einem Punkt innerhalb des Intervalls kannst du dann testen, ob der Bereich positiv oder negativ ist. Dann kennst du die Krümmung.

Avatar von 18 k
0 Daumen

\(f(x)=e^{x}\cdot(x^2 - 9x - 8) \)

\(f´(x)=e^{x}\cdot(x^2 - 9x - 8)+e^{x}\cdot(2x-9) =e^{x}\cdot(x^2-7x-17)\)

\(f´´(x)=e^{x}\cdot(x^2-7x-17)+e^{x}\cdot(2x-7)=e^{x}\cdot(x^2-5x-24)\)

\(e^{x}\cdot(x^2-5x-24)=0\)   \(e^{x}≠0\)

\(x^2-5x-24=0\)

\(x_1=-3\)

\(x_2=8\)

Da sind die Wendestellen.

Avatar von 40 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community