0 Daumen
289 Aufrufe


Aufgabe:

Gegeben sind vier Punkte \( A(2|-2|-1), B(6|-6| 4), C(2|4|-1), D(4|2|-5) \).
Berechnen Sie das Volumen \( V \) des Tetraeders.
\( V= \)


Problem/Ansatz:

Hi Leutee, ich habe eine Frage zu meiner Aufgabe, also ich habe da V= -26. Ist das richtig ? Wenn nein kann mir jemand sagen was genau da raus kommt und warum ? Habe selsbt eine 3x3 Matrix verwendet. Vielen Dank:**

Avatar von

Hallo zeig deine Rechnung, aber Volumen sind immer positiv!

lul

2 Antworten

0 Daumen

ich habe da V= -26. Ist das richtig ?


Nein. Ein negatives Volumen gibt es nicht.

Avatar von 55 k 🚀

hmm ok ja das ergibt Sinn, habe ich da was falsch gerechnet oder kannst du mir es vielleicht richtig zeigen ? Danke dir im Voraus abakus :)

habe ich da was falsch gerechnet

Nein. Du hast nur ein falsches Vorzeichen, das sich bei Benutzung einer anderen Reihenfolge der Vektoren ändert. Lass also in Zukunft bei dieser Berechnung das Vorzeichen am Ende einfach immer weg.

Lass also in Zukunft bei dieser Berechnung das Vorzeichen am Ende einfach immer weg.

ist schon sehr salopp formuliert.

Der Fragesteller hat übersehen, dass in der von ihm verwendeten Formel etwas von "Betrag" stand.

(Praktisch läuft es natürlich auf das Weglassen des Vorzeichens hinaus.)

Nochmal salopp : Merkregel : Betragsstriche sind ein Radiergummi fürs Vorzeichen.

0 Daumen

Du kannst solche Rechnungen gut mit WolframAlpha überprüfen.

Hier ist der Link zu deiner konkreten Aufgabe.


Das Volumen ist tatsächlich 26.

Avatar von 11 k

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
1 Antwort
0 Daumen
2 Antworten
0 Daumen
2 Antworten

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community