Aloha :)
$$h(x)=\sin\left(\frac x2\right)$$$$h'(x)=\cos\left(\frac x2\right)\cdot\frac12=\frac12\sin\left(\frac\pi2-\frac x2\right)$$
Wir haben verwendet, dass per Definition \(\cos(x)=\sin(\frac\pi2-x)\) gilt. Weiter verwenden wir, dass die Nullstellen der Sinus-Funktion alle ganzzahligen Vielfachen von \(\pi\) sind. Die Ableitung wird daher Null, wenn:$$\frac\pi2-\frac x2=n\cdot\pi\quad\text{mit }n\in\mathbb Z\text{ beliebig}$$Wir stellen nach \(x\) um:$$x=\pi-2n\,\pi\quad\text{mit }n\in\mathbb Z\text{ beliebig}$$
Im Intervall von \(\left[0;\frac92\pi\right)\) liegen also die Nullstellen der ersten Ableitung bei:$$x_1=\pi\quad;\quad x_2=3\pi$$
~plot~ 1/2*cos(x/2) ; [[0|16|-1|1]] ; x=9/2*pi ; {pi|0} ; {3pi|0} ~plot~