0 Daumen
553 Aufrufe

Aufgabe:

Mit einer elektr. Anlage wird am Ausgang überprüft,ob ein Kunde unbezahlte Kleidungsstücke bei sich führt. Bei kaufhausdieben spricht die Anlage mit einer Wahrscheinlichkeit von 93% an,allerdings auch bei ehrlichen Kunden mit einer Wahrscheinlichkeit von 0.75%. nur die Hälfte der verdachtsfälle erweist sich als gerechtfertigt.


Problem/Ansatz:

bestimmen Sie den Anteil der Diebe unter allen Kunden.

Wie?

Avatar von
bestimmte Wahrscheinlichkeit

Bestimmt meinst Du die bedingte Wahrscheinlichkeit?

Wenn mit BESTIMMT das Ergebnis gemeint ist, macht es sogar Sinn, auch wenn es ungewohnt ist im Kontext.

Man braucht eine bestimmte Grund-WKT am Anfang um auf die 50% in der Angabe kommen zu können. Gemeint ist aber wohl der Sachverhalt "bedingte WKT", um den es hier grundsätzlich geht.

2 Antworten

0 Daumen
 
Beste Antwort
nur die Hälfte der verdachtsfälle erweist sich als gerechtfertigt

Das heißt: 93% der Diebe sind genau so viel wie 0,75% der Ehrlichen.

Avatar von 55 k 🚀

Aber die Antwort macht doch keinen Sinn . Anzahl der Diebe in Anzahl?

Aber die Antwort macht doch keinen Sinn

Ich habe auch den Eindruck, dass du sie nicht verstanden hast bzw. nichts damit anfangen kannst.

Andere können mit 0,93D=0,0075 E sicher mehr anfangen und daraus auch das Verhältnis D:(D+E) bestimmen.

0 Daumen

Bestimmungsgleichung

p * 0.93 / (p * 0.93 + (1 - p) * 0.0075) = 1/2

2 * p * 0.93 = p * 0.93 + (1 - p) * 0.0075

p * 0.93 = (1 - p) * 0.0075  --> p = 0.008

Es sind also nur ca. 0.8% Diebe unter den Kunden.

Avatar von 488 k 🚀

Danke..verstanden.

Mach ein Baumdiagramm in solchen Fällen.

Man erkennt sofort, wie die Pfade zu beschriften sind.

Hier fehlen die Werte für die ersten beiden Äste.

p -> 0,93 bzw. 0,07

(1-p) -> 0,0075 bzw. 0,9925

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community