Weg ohne Substitution:
d)
\( 2^{6 x}-4 \cdot 2^{3 x}+4=0 \)
\( 2^{6 x}-4 \cdot 2^{3 x}+(\frac{4}{2})^2=-4+(\frac{4}{2})^2 \)
\( (2^{3 x}-2)^2=0 |±\sqrt{~~} \)
\( 2^{3 x}-2=0 \)
\( 2^{3 x}=2 \)
\( 8^{x} =2\)
\( x=\frac{1}{3}\)
e)
\( 8^{4x} -12\cdot8^{2x}+32=0\)
\( 8^{4x} -12\cdot8^{2x}=-32\)
\( 8^{4x} -12\cdot8^{2x}+(\frac{12}{2})^2=-32+(\frac{12}{2})^2\)
\(( 8^{2x} -\frac{12}{2})^2=-32+(\frac{12}{2})^2\)
\(( 8^{2x} -6)^2=4 |±\sqrt{~~}\)
\(1.)\)
\(8^{2x} -6=2 \)
\(8^{2x}=8 \)
\(64^{x}=8 \)
\(x=\frac{1}{2} \)
\(2.)\)
\(8^{2x} -6=-2 \)
\(64^{x} =4 \)
\(x =\frac{1}{3} \)