log3x(3/x)+(log3x)2=1
Basiswechsel für den ersten Term, damit eine neue Basis = 3 entsteht
allgemein: loga(b) = logc(b)/logc(a); a = 3x und b = 3/x -> log3x(3/x) = log3(3/x)/log3(3x)
log3(3/x)/log3(3x) + (log3x)2 =1 | *log3(3x)
log3(3/x) + (log3x)2 **log3(3x) = 1*log3(3x)
log3(3) - log3(x) + (log3x)2 *log3(3x) = log3(3x)
1- log3(x) + (log3x)2 *log3(3x) = log3(3x)
1- log3(x) + (log3x)2 *log3(3x) - log3(3x) = 0
1- log3(x) + log3(3x)*[(log3x)2 - 1] = 0
Substitution 3x=z
1- log3(z/3) + log3(z)*[(log3(z/3))2 - 1] = 0
1- log3(z) + log3(3) + log3(z)*[(log3(z) - log3(3))2 - 1] = 0
2- log3(z) + log3(z)*[(log3(z) - 1)2 - 1] = 0
Substitution y=log3(z)
2- y + y*[(y - 1)2 - 1] = 0
2- y + y*[y2-2y + 1 - 1] = 0
2- y + y3-2y2 = 0
(2- y) - y2*(2-y) = 0
(2- y)(1 - y2) = 0 -> (2- y) = 0 oder (1 - y2) =0 -> y1 = 2 oder y2/3 = ±1
Es war log3(z) = y -> 2=log3(z1) -> z1 = 32 Analog z2 = 3 und z3 = 1/3
Es war auch 3x=z -> x1 = 3, x2 = 1 und x3 = 1/9