Falls du es schon gelöst hast und dir langweilig werden sollte, habe ich noch ein Problem aus der Graphentheorie für dich. Da du entsprechende Definitionen, Begriffe etc. vermutlich nicht kennst, formuliere ich es etwas anders:
Wir betrachten Menschenmengen. Jede Person \(x\) aus dieser Menge ist mit jeder anderen Person \(y\) aus dieser Menge entweder befreundet oder nicht befreundet. Dabei ist Freundschaft immer zweiseitig, d.h. wenn \(x\) mit \(y\) befreundet ist, so ist auch \(y\) mit \(x\) befreundet (analog für nicht befreundet).
Beweise, dass es in einer Menschenmenge mit 6 oder mehr Personen immer mindestens ein Trio gibt, sodass alle Personen aus diesem Trio entweder untereinander befreundet oder nicht befreundet sind.
Eine so ähnliche Aufgabe gab es glaube ich vor nicht allzu langer Zeit beim Bundeswettbewerb Mathematik.