Es gilt n→∞lim(1+nx)n=ex
Also haben wir folgendes:
n→∞lim(1+4−n22−n)n=n→∞lim(1+(2−n)(2+n)2−n)n=n→∞lim(1+2+n1)n=n→∞lim(1+2+n1)n+2−2=n→∞lim(1+2+n1)n+2n→∞lim(1+2+n1)−2=e1⋅n→∞lim(1+2+n1)−2=e1⋅(n→∞lim1+n→∞lim2+n1)−2=e1⋅(1+0)−2=e1⋅(1)−2=e