Sei \(f:[-\pi,\pi] \rightarrow \mathbb{R}, f(x)=sin(x)\). Ich soll jetzt ein \(n\in \mathbb{N}\) finden, sodass für das n-te Taylor Polynom zu f in 0 gilt: \(|f(x)-T_Nf(x,0)|\leq\frac{1}{100}\qquad (x\in[-\pi,\pi])\).
Meine Idee dazu warn nun, das ganze mal für n=4 zu machen. Das heißt ich hätte dann folgende Taylorreihe: \(0+1+0-\frac{1}{6}x^3+0+\frac{1}{120}x^5\) (wobei der letzte Summand mein Restglied ist, da die fünfte Ableitung von \(sin(x)\) an der Stelle 0 gleich meinem letzten Summanden ist. Wie kann ich das ganze nun aber abschätzen, sodass ich das zeigen kann was ich zeigen soll?
Reicht es das ganze so abzuschätzen, dass meine Taylorreihe \(\leq\frac{1}{120}\) ist und damit auch \(\leq\frac{1}{100}\)?