Hallo Cleopatra,$$F(x) = \frac { a_0 }{ 2 }+\sum\limits_{k=1}^{∞} \text{ }[ a_k·cos(kωx)+b_k·sin(kωx)]$$$$a_0=\frac { 2 }{ T }·\int_{a}^{b} \! f(x) \, dx$$$$a_k=\frac { 2 }{ T }·\int_{a}^{b} \! f(x)·cos(kωx) \, dx$$$$b_k=\frac { 2 }{ T }·\int_{a}^{b} \! f(x)·sin(kωx) \, dx$$Bei dir mit [a,b] = [-π,π] → T = 2π → ω = 2π/T = 1 erhalte ich
$$F(x) = \frac { a_0 }{ 2 }+\sum\limits_{k=1}^{∞} \text{ }[ a_k·cos(kx)+b_k·sin(kx)]$$$$a_0=\frac { 1 }{ π }·\int_{-π}^{π} \! (x^2+x) \, dx= \frac { 2π^2 }{ 3 }$$$$a_k=\frac { 1 }{ π }·\int_{-π}^{π} \! (x^2+x)·cos(kx) \, dx=\frac { 4·cos(k·π) }{ k^2 }$$$$b_k=\frac { 1 }{ π }·\int_{-π}^{π} \! (x^2+x)·sin(kx) \, dx=\frac {-2·cos(k·π) }{ k }$$mit cos(k·π) = 1 für gerade k , -1 für ungerade k
Gruß Wolfgang