A = [2,0,8], C = [-2,4,4], D = [6,8,0]
AC = [-2,4,4] - [2,0,8] = [-4, 4, -4]
AD = [6,8,0] - [2,0,8] = [4, 8, -8]
AC x AD = [-4, 4, -4] x [4, 8, -8] = [0, -48, -48] = - 48·[0, 1, 1]
[x, y, z]·[0, 1, 1] = [2, 0, 8]·[0, 1, 1]
y + z = 8
z = 8 - y
Die Punkte der Ebene haben also die Form [x, y, 8 - y]
Damit die Ortsvektoren senkrecht zu AC sind muss gelten
[x, y, 8 - y]·[-4, 4, -4] = 0
4·x - 8·y = -32
y = 0.5·x + 4
Also haben die Punkte die Form
[x, (0.5·x + 4), 8 - (0.5·x + 4)] = [x, 0.5·x + 4, 4 - 0.5·x] = [0, 4, 4] + k·[2, 1, -1]