ich konnte nirgends eine formel für diesen aufgabentyp ausfindig machen.
da hilft wohl tatsächlich nur selber zählen, oder ein programm zu benutzen.
n:= anzahl der kombinationen
k:= anzahl gewählter bälle
k = 1
n = 3
{r} {b} {g}
k = 2
n = 6
{r,r} {r,b} {r,g} {b,b} {b,g} {g,g}
k = 3
n = 9
{r,r,b} {r,r,g} {r,b,b} {r,b,g} {r,g,g} {b,b,b} {b,b,g} {b,g,g} {g,g,g}
k = 4
n = 11
{r,r,b,b} {r,r,b,g} {r,r,g,g} {r,b,b,b} {r,b,b,g} {r,b,g,g}
{r,g,g,g} {b,b,b,g} {b,b,g,g} {b,g,g,g} {g,g,g,g}
k = 5
n = 12
{r,r,b,b,b} {r,r,b,b,g} {r,r,b,g,g} {r,r,g,g,g} {r,b,b,b,g} {r,b,b,g,g}
{r,b,g,g,g} {r,g,g,g,g} {b,b,b,g,g} {b,b,g,g,g} {b,g,g,g,g} {g,g,g,g,g}
k = 6
n = 11
{r,r,b,b,b,g} {r,r,b,b,g,g} {r,r,b,g,g,g} {r,r,g,g,g,g} {r,b,b,b,g,g} {r,b,b,g,g,g}
{r,b,g,g,g,g} {r,g,g,g,g,g} {b,b,b,g,g,g} {b,b,g,g,g,g} {b,g,g,g,g,g}
k = 7
n = 9
{r,r,b,b,b,g,g} {r,r,b,b,g,g,g} {r,r,b,g,g,g,g} {r,r,g,g,g,g,g} {r,b,b,b,g,g,g}
{r,b,b,g,g,g,g} {r,b,g,g,g,g,g} {b,b,b,g,g,g,g} {b,b,g,g,g,g,g}
k = 8
n = 6
{r,r,b,b,b,g,g,g} {r,r,b,b,g,g,g,g} {r,r,b,g,g,g,g,g}
{r,b,b,b,g,g,g,g} {r,b,b,g,g,g,g,g} {b,b,b,g,g,g,g,g}
k = 9
n = 3
{r,r,b,b,b,g,g,g,g} {r,r,b,b,g,g,g,g,g} {r,b,b,b,g,g,g,g,g}
k = 10
n = 1
{r,r,b,b,b,g,g,g,g,g}