Aufgabe:
Es sei (X,+,*) ein Ring mit Einselement 1. In X werden durch
⊕:X×X→X:(x,y)⟼x⊕y≔x+y+1, ⨀: X×X→X:(x,y)⟼x⨀y≔xy+x+y
neue Operationen eingeführt. Zeigen Sie, dass (X,+,*) zu (X,⨂,⨀) isomorph ist
Hinweis: Zwei Ringe (X,+,*) und (X,⨂,⨀) sind isomorph,
wenn es eine bijektive Abbildung f:X→X gibt für die gilt
∀x,y∈X:f(x+y)=f(x)⨁f(y),f(x*y)=f(x)⨀f(y).
Es sei (X,+,*) ein Ring mit Einselement 1. In X werden durch
⊕:X×X→X:(x,y)⟼x⊕y≔x+y+1, ⨀: X×X→X:(x,y)⟼x⨀y≔xy+x+y
neue Operationen eingeführt. Zeigen Sie, dass (X,+,*) zu (X,⨂,⨀) isomorph ist
Hinweis: Zwei Ringe (X,+,*) und (X,⨂,⨀) sind isomorph,
wenn es eine bijektive Abbildung f:X→X gibt für die gilt
∀x,y∈X:f(x+y)=f(x)⨁f(y),f(x*y)=f(x)⨀f(y).
Problem/Ansatz:
Einfach überhaupt keine Idee.