Konkretisieren wir das mal n=3
LP:={a1 * x1 + a2 * x2 + a3 * x3 <= b, c1 * x1 + c2 * x2 + c3 * x3->max }
max Tableau Matrix-Gleichung
\(\small \left(\begin{array}{rrr}a1&a2&a3\\c1&c2&c3\\\end{array}\right) \left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right)= \left(\begin{array}{r}b\\0\\\end{array}\right)\)
Transponieren: min Tableau
\(\small LPDual \, := \, \left(\begin{array}{rr}a1 \\a2 \\a3 \\b \\\end{array}\right) \; x1 = \, \left(\begin{array}{rr} c1\\ c2\\ c3\\ 0\\\end{array}\right) \)
oder
\( LPDual\, := \, \left\{ a1 \; x1 = c1, a2 \; x1 = c2, a3 \; x1 = c3, -b \; x1 = 0 \right\} \)
Genügt das?