0 Daumen
608 Aufrufe


Wir betrachten die folgenden Mengen geordneter Paare:
M1 ={(0,2),(1,2),(2,1),(2,2),(3,2)},

M2 ={(0,1),(1,2),(2,3),(3,4),(4,1)}.


(a) Welche Mengen definieren, Über die Zuordnung (x,f(x)), eine Funktion?


Problem/Ansatz:

Leider fehlt mir da der Ansatz oder denke ich zu kompliziert? Freue mich auf Hilfe !!

!!!!

Avatar von

1 Antwort

0 Daumen

\(M_{1}\) definiert keine Funktion. Jedem Element \(x\in X\) soll genau ein Element \(f(x)\in Y\) zugeordnet werden. Du hast allerdings für \(x=2\) den Output \(\{1,2\}\) - also keine Funktion, sondern "nur" eine Relation.


\(M_2\) definiert eine Funktion.

Beispielsweise \(f: \mathbb{R}\to \{x\in \mathbb{R} : x\leq 4 \}, x\mapsto  -\frac{1}{6}x^{4}+x^{3}-\frac{11}{6}x^{2}+2x+1\)


Avatar von 28 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community